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Abstract 

Background: Influenza vaccine composition is reviewed prior to every flu season since influenza viruses 

frequently evolve through antigenic variations. Vaccine strains are selected in expectation of the upcoming 

influenza season to allow sufficient time for production. The aim of research is to use computational models 

for predicting the evolution of influenza based on the association of genetic mutations and antigenic traits 

of circulating viruses may apprise vaccine strain assortment decisions. 

Methodology: This study also focuses on the correlation of viruses with spread rate using statistical method. 

For this method, we have worked on four different viruses Influenza, Ebola, Measles and Dengue. Year wise 

mutation rate was correlated with the epidemiological data to see the impact of mutations on the disease 

spread.   

Results: We highlight the efficiency of this approach by analyzing the mutation rate and correlating it with 

its spread rate to find out either mutation in viruses causes disease spread or not. Our study identified 

mutations in viruses gets high before the outbreak of disease through which we can assess the upcoming 

outbreak. We can set a threshold value for nucleotide difference that can predict next outbreak of viral 

disease.   

Conclusion: The concept of correlation between the genomic data and epidemic spread leads to the 

research analysis that mutations does not follow any pattern. Though most of the mutations are random. 

Our research concluded that some mutations may suppress the virus outbreak, and some mutate to become 

more resistant than the existing strain that causes outbreak.  
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Introduction 

Human history is full of viral disease epidemics that 

have devastated societies and whole populations. 

Well-known instances include the 1918 Spanish flu 

pandemic, the 2009 influenza H1N1 pandemic. The 

Ebola virus (EBOV) epidemic in the year 2014-2015 

in West Africa, Dengue outbreak in Thailand with 

102,510 confirmed cases in 20191 and measles 

outbreak in California year 2014-20152. Not all 

outbreaks spread pandemic status, some of them 

are controlled by environmental factors or specific 

control measures. Outbreak research addresses 

two aims: To terminate the present outbreak and 

prevent future ones3. For eras, epidemiological 

methods such as detailed interaction tracing and 

mathematical modeling have been used to keep up 

these aims 4,5.   

 

Applying statistical method to traditional 

epidemiology has significantly upgraded outbreak 

monitoring and prevention for all categories of 

viral diseases. These tools include correlating 

genomic and epidemic data and phenotypic 

methods to determine the specific strain or form of 

virus circulating in a population. They can be used 

to enhance diagnostics, to advice treatment 

programs and vaccine development, and to find 

out the spread of pathogens 6,7.  

 

Analysis using genomic data expands our capacity 

to recognize viral outbreaks even further, 

subsequently tools of bioinformatics can predict 

next viral strain in specific viruses. Genomic analysis 

can lead to resolve disease spread by predicting 

the next outbreak years using computational 

methods, and data processing. Correlation of 

genomic data with spread rate can help in the 

prediction and control of multiple viral diseases 

before their outbreak. In this study we have 

considered four different viruses i.e., Influenza, 

Ebola, Measles and Dengue for the assessment of 

impact of mutations in viruses on disease spread.   

Influenza, usually known as the flu, is an infectious 

disease triggered by an influenza virus. Symptoms 

can be minor to severe. Influenza is the pattern of 

a viral disease in which sustained evolution of the 

virus is of supreme importance for annual 

epidemics and infrequent pandemics of the 

disease in humans8. Out of all the four categories 

of influenza viruses (A, B, C and D), only influenza 

A viruses are commonly developed in humans9. 

The surface antigens of influenza viruses go 

through two types of alterations requiring the 

modification of vaccine strains almost every year. 

Antigenic drift are minor variations in the genes of 

influenza viruses that occur frequently over time as 

the virus replicates10. The key variation arises as a 

consequence of increase of point mutations in the 

superficial antigens determined by the immune 

response; this is represented as antigenic drift11. 

Antigenic shift is a process by which two or more 

different strains combines to form a new and 

different subtype12. Antigenic shift is activated 

either by direct transmission of non-human 

influenza viruses to humans or the re-assortment 

of genes from diverse influenza viruses that have 

infected a single cell.  

 

A threatening epidemic of Zaire Ebola virus has 

been attacking West Africa since around December 

2013, with the primary cases likely taking place in 

southern Guinea13. The responsible Ebola strain is 

intently associated to a strain related with past 

EBOV outbreaks in Central Africa and circulating in 

West Africa for about a decade14. Unusually, the 

existing size of the current EBOV epidemic far 

exceeds the overall number of cases reported for 

all former Ebola outbreaks combined. A total of 

6,553 cases, with 3,083 deaths, have been reported 

to the World Health Organization (WHO) as of 23 

September 2014. The contributing agent of Ebola 

Virus is an RNA virus of the family Filoviridae and 

genus Ebola Virus. There are total five Ebola strains 

have been recognized, namely Zaire ebolavirus, Tai 

Forest ebolavirus, Bundibugyo ebolavirus, Sudan 

ebolavirus and Reston ebolavirus with fruit bats 

which are the major probable reservoir host15.  

 

Measles morbillivirus, is a single-stranded, 

enveloped negative-sense, non-segmented RNA 

virus of the genus Morbillivirus within the family 

Paramyxoviridae. WHO reports that worldwide, in 

an approximate uptrend of cases going on in 2017, 

measles led to around 110,000 deaths, recorded in 

children aged under 5 years16. In the United States, 

outbreaks have been well known in Southern 
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California throughout December 2014 to February 

2015 involved at least 125 cases2. Around 75% of 

the United States' cases originate from huge 

outbreaks in New York state and New York City17.  

  

Dengue is an infectious disease caused by the 

transfer of virus from the genre of mosquitoes 

called the Aedes agypti and Aedes albopictus. 

These mosquitoes are specially known for living in 

stagnant water. Dengue is a global burden and a 

major challenge throughout the world. Every year 

dengue infects an estimated 50-100 million 

individuals in tropical and subtropical countries. 

Dengue hemorrhagic fever may lead to fatal 

hemorrhagic events. Dengue has become the 

quickest growing mosquito-borne disease with 

nearly half the world’s population currently in 

danger. Analysis at the local level in a specific high 

disease outbreak time frame is very much needed 

for better control of the dengue spreads locally. 

 

Methodology  

The flow of this research can be analyzed by the 

following schematic diagram.  

 

 
 

Figure 1: Schematic diagram of methodology followed in this research. 
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Influenza genomic data is utilized for two different 

methods one is related with the prediction of 

upcoming influenza strain and other one is to 

assess the impact of mutation in viruses including 

influenza, Ebola, Measles and Dengue on the 

spread of disease. 

 

Influenza Research database (IRD) has search tools 

that allows user to search several different 

databases18. It is a huge database through which 

genomic data of hemagglutinin (HA1-HA18) and 

Neuraminidase (N1-N11) have been retrieved. 

Furthermore, different irregular genomic data 

points of H1N1 1918-1999 and continuous genomic 

data points 2000-2019 of USA have been collected. 

Other types of influenza A virus genomic data i.e. 

H3N2 2004-2019 USA, H5N1 2003-2015 China and 

H1N2 2009-2012 and 2017-2018 of USA have also 

been collected. The genomic data of Ebola, 

Measles and Dengue has been taken from virus 

pathogen resource19.  

Epidemic Data of Human influenza H1N1 have been 

collected on yearly basis from center of disease 

control20. Influenza cases from 2003 to 2019 

cumulative and unadjusted incidence rate per 

100,000 population data has been retrieved from 

CDC. Few epidemic cases and death reports have 

been collected by the help of California 

department of public health21. Data from 2003 to 

2019 for hospitalizations per week and death cases 

per week have been collected from California 

Department of Public Health.  

 

The collection of epidemic data of Ebola is from 

humanitarian data exchange22 and center of 

disease control23. Epidemic data of measles has 

been taken from center of disease control24. 

Epidemic data of dengue has been collected from 

WHO25.  

 

 

 

Table 1: Year wise genomic and epidemiological data considered for four different  

viruses from different regions. 

 

Virus  Year Region Reference 

Influenza  2005-2019 California 18, 20, 21 

Ebola  

1994-1995 

Democratic 

Republic 

of Congo 

19, 22, 23 

1995-1996 

2001-2002 

2002-2003 

2007-2008 

2017-2018 

Measles  2012-2019 California 19, 24 

Dengue  2000-2017 Thailand 19, 25 

 

Techniques of Influenza Strain Prediction   

The method designed for influenza strain prediction requires specific designed softwares. Clustal Omega is a 

multiple sequence alignment tool26 that uses seeded guide trees and HMM (Hidden Markov Model) profile-

profile techniques to create alignments between more than two sequences.  
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In bioinformatics, the consensus sequence is the 

calculated order of most frequent residues, either 

nucleotide or amino acid, found at each position in 

a sequence alignment27. The HIV sequence 

Database28 makes a consensus of a submitted 

alignment using common consensus conventions.  

 

Nucleotide difference is calculated by using 

webserver emboss water29 or LALIGN30. It is known 

as William Pearson’s Lalign program. Lalign 

program is based on Huang and Miller algorithm. 

It is a part of sequence analysis program. EMBOSS 

Water uses the Smith Waterman algorithm to 

calculate the local alignment of two sequences. By 

taking the difference of genomic segments of two 

years we can find out the change in nucleotide 

within each year.  

 

Calculation of Nucleotide Difference and 

Epidemic Spread  

• Nucleotide differences can be calculated by 

taking difference of one genomic segment from 

another   

• Length 1- Length 2 =XYZ  

• Take difference of small nucleotide segment 

with overlapping   

• Small Length- Overlapping= ABC  

• Take difference of both calculated values to 

calculate the final nucleotide difference.   

• XYZ-ABC  

• To calculate variation in number of cases, 

difference of two years is taken, and natural log 

is applied to arrange data set for correlation 

with nucleotide difference.  

• For example   

• 2001-2002 (Epidemic data of two years)  

• 4324 – 2345 = 1979 (difference of epidemic 

data)  

• 2.755 (Natural log of difference)  

• Pearson’s correlation is used between genomic 

and epidemic data which is the most useful 

technique to find out correlation between the 

two variables. 

 

Results  

Influenza A strains evolves and antigenically shifts, 

or drifts more rapidly as compared to other viruses. 

The Phylogenetic tree in (Figure 2B) represents the 

consensus of selected years (2009-2010-2011-2012-

2014 and 2018) which was constructed by 

understanding the branching pattern in (Figure 

2A). In (Figure 2B), we selected few years (1918-

1934-1943) and aligned them with sequence of 

2019 along with consensus sequence and analyzed 

that it was almost similar (Antigenic drift) to the 

consensus of past few years (2009 to 2011) and 

(2014 to 2018).  

 

We concluded that consensus of selected years can 

predict the antigenic shift/drift of upcoming year 

(2020). Year 2019 in (Figure 2B) shows antigenic 

drift which clearly represents that there is no major 

change in the influenza H1N1 strain since past five 

years. Same methodology can be used for the 

prediction of influenza 2020 strain.  

 

Phylogenetic tree in (Figure 2C) represents the co-

evolution in virus. H1N1 strain of 2017 is related with 

the consensus of H3N2, H1N2, H5N1 and H1N1 than 

2018 and 2019. Antigenic drift and antigenic shift 

are important parameters on which vaccination of 

influenza strain is designed.  

 

It is essential to know the strain is similar to 

previous year or changed before designing of 

vaccination. Following results represents the 

phylogenetic trees along with consensus of 

multiple years and different strains of influenza.   
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Figure 2: Phylogenetic Tree 2(A) represents comparison of H1N1 from 1918 to 2018 which helps in 

the selection of consensus years for influenza strain prediction. Phylogenetic tree 2(B) comparing 

different types of influenza A viruses. H1N1 of year 1918-1934-1943 along with consensus of 

selected years representing antigenic drift in the year 2019. Phylogenetic tree 2(C) represents 

coevolution in viruses which means that there must be some antigenic shift before 2017 and virus of 

other strain evolved into H1N1. 
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Impact of Mutation in Different Viruses   

Selected outbreak years in four different viruses represents that the impact of mutation in virus is strong that 

took part in the major outbreak of disease. Increase in mutation count increases the spread rate. The mutations 

in viruses gets high before the outbreak of disease through which we can assess the upcoming outbreak. We 

can set a threshold value for nucleotide difference that can predict next outbreak of viral disease.  

 

 

Table 2: Outbreak years of viruses along with their epidemic detail and mutation count. 

 

Virus  Outbreak Years Mutation Epidemic Cases 

Influenza  

2009-2010 6 8.79 

2014-2015 50 8.98 

2016-2017 6 9.05 

2017-2018 6 6.38 

2018-2019 6 6.42 

Ebola   

1994-1995 180 5.19 

1995-1996 193 5.26 

2017-2018 300 5.7 

Measles  

2013-2014 887 6.17 

2014-2015 887 6.17 

2018-2019 40 6.73 

Dengue  

2000-2001 116 11.7 

2008-2009 26 11.07 

2009-2010 25 11.42 

2013-2014 124 11.76 

2014-2015 141 11.76 

2015-2016 494 11.73 
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A                                                                                                 B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
C                                                                                               D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3: In plot (A) Nucleotide differences (X-axis) from 2005-2006 to 2007-2008 and 2013-2014 to 

2015-2016, and the epidemic cases (Y axis) of influenza from 2005-2006 to 2007-2008 and 2013-

2014 to 2015-2016 are correlated. In plot (B) Nucleotide differences (X axis) from 1994-1995 to 2017-

2018 and epidemic cases (Y-axis) of Ebola from 2017-2018 then from 2013-2014. In plot (C) 

Nucleotide differences (X-axis) of 2013-2013 and then from 2015-2016 to 2018-2019 and epidemic 

cases (Y-axis) of measles of 2013-2013 and then from 2015-2016 to 2018-2019. In plot  (D) 

Nucleotide differences (X-axis) of 2000-2001, 2003-2004, 2006-2007 to 2010-2011, 2013-2014, 

2014-2015 and epidemic cases (Y-axis) of dengue 2000-2001, 2003-2004, 2006-2007 to 2010-2011, 

2013-2014, 2014-2015.  

 

 

 

 

Pearson’s Correlation is 0.62 

62% Correlation 
Pearson’s Correlation is 0.927 
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Pearson’s Correlation is 0.30 

30% Correlation 

Pearson’s Correlation is 0.78 
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Discussion 

The virulence of disease can be distinguished by its 

genetic patterns with the help of genome 

sequencing along with the genetic factors that 

support to successful vaccine response31. Viruses 

that are closely associated to each other typically 

share the same antigenic properties and an 

immune system exposed to an analogous virus will 

usually identify it and respond32. But these minor 

genetic changes can gather over time and result in 

viruses that are antigenically different (away on the 

phylogenetic tree). When it occurs, the body’s 

immune system may not identify those viruses. 

Mutational and evolutionary techniques associated 

to influenza viruses can help us develop prediction 

models33. Prediction models are extensively 

required for vaccine production34. The core 

research in epidemic and genomic parameters has 

the potential to efficiently develop vaccine before 

the outbreak35. 
 

The prediction of strain and concept of co-

evolution can be verified by consensus of genomic 

segments36. In (Figure 2B) consensus of selected 

years was made with the help of (Figure 2A) which 

represents phylogenetic tree of influenza H1N1 

from (1918 to 2019) with regular data points from 

(2000 to 2019). Phylogenetic tree in (Figure 2C) 

represents the co-evolution in virus. H1N1 strain of 

2017 is related with the consensus of H3N2, H1N2, 

H5N1 and H1N1 than 2018 and 2019. Antigenic drift 

and antigenic shift are important parameters on 

which vaccination of influenza strain is designed37. 

It is essential to know the strain is similar to 

previous year or changed before designing of 

vaccination38.   

 

In (Figure 2B) we selected few years (1918-1934-

1943) and aligned them with sequence of 2019 

along with consensus sequence and analyzed that 

it was almost similar (antigenic drift) to the 

consensus of past few years (2009 to 2011) and 

(2014 to 2018) which clearly represents that there is 

no major change in the strain since past 4 years 

which can be verified by the epidemic cases as well. 

We concluded that consensus of selected years can 

predict the antigenic shift/drift of the year (2020).   

The concept of correlation between the genomic 

data and epidemic spread leads to the research 

analysis that mutations does not follow any 

pattern. Though most of the mutations are 

random. Some mutations may suppress the virus 

outbreak, and some mutate to become more 

resistant than the existing strain that causes 

outbreak. Since the flu virus commonly drifts in its 

genetic alignment, you have to reformulate the 

vaccine, and this is one of the causes that 

individuals have to get a flu shot on yearly basis39. 

It has been observed that mutations in virus have 

strong impact in few years only in different viruses.   

 

Conclusion 

We have concluded that influenza epidemic and 

genomic data of the year 2005-2006, 2006-2007, 

2007-2008, 2013-2014, 2015-2016 have 62% 

correlation which shows that increase in mutation 

count cause increase in spread rate. Strong 

correlation justifies the concept of antigenic drift 

and antigenic shift in case of influenza. Ebola 

genomic and epidemic data of the years 1994-

1995, 1995-1996, 2001-2002, 2002-2003, 2007-

2008 shows 92% correlation which represents that 

the impact of mutation in virus was strong that 

took part in the major outbreak of disease. Measles 

genomic and epidemic data of the years 2012-2013, 

2015-2016, 2016-2017, 2017-2018 shows 30% 

correlation which represents that mutation in 

measles virus have moderate effect on disease 

outbreak. Dengue genomic and epidemic data of 

the year 2000-2001, 2003-2004, 2006-

2007,20072008, 2008-2009, 2009-2010, 2010-2011, 

2013-2014, 2014-2015 shows 78% correlation which 

represents that the impact of mutation in virus was 

strong that took part in the major outbreak of 

disease. Our developed method can be applied on 

Bacteria and other viruses. This research can help 

us to study how viruses develop resistance against 

drugs. 
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